7 + √24t = sin(z) + t
sin(z) + t = 7 + √24t
sin(z) = 7 + √24t - t
sin(z) = 7 + t(√24 - 1)
(sin(z) - 7) / ( √24 - 1) = t
t = (sin(z) - 7) / ( √24 - 1)
t^2 = (sin(z) - 7)^2 / (24 - 2√24 + 1)
t^2 = (sin(z) - 7)^2 / 25 - 2√24
وبما أن sin(z) + t = 7 + √24t
إذاً t^2 = (7 + √24t - 7)^2 / 25 - 2√24
t^2 = (√24t)^2 / 25 - 2√24
t^2 = 24t^2 / 25 - 2√24
t^2 = (24t^2 - 50t√24) / 25
وبالتالي، الإجابة النهائية تكون:
t^2 = (24t^2 - 50t√24) / 25