0 تصويتات
بواسطة
(4) For a glass prism of refractive index 1.5 the angle of minimum deviation is equal to the apex angle of the prism. What is the value of apex angle?

1 إجابة واحدة

0 تصويتات
بواسطة
The relationship between the angle of minimum deviation (δm), the refractive index (n) of the prism, and the apex angle (A) of the prism is given by the formula:
sin((A + δm)/2) = n * sin(A/2)
Given that δm = A and n = 1.5, we can substitute these values into the formula:
sin((A + A)/2) = 1.5 * sin(A/2)
sin(3A/2) = 1.5 * sin(A/2)
Using the double angle identity for sine, sin(2θ) = 2sin(θ)cos(θ), we can rewrite the equation as:
2sin(A)cos(A) = 1.5 * 2sin(A/2)cos(A/2)
Simplifying further gives:
sin(2A) = 1.5 * sin(A)
Expanding sin(2A) using the double angle identity sin(2θ) = 2sin(θ)cos(θ):
2sin(A)cos(A) = 1.5 * sin(A)
Solving the equation gives:
2cos(A) = 1.5
cos(A) = 0.75
A = cos⁻¹(0.75)
A ≈ 41.41 degrees
Therefore, the apex angle of the prism is approximately 41.41 degrees.
مرحبًا بك إلى يزيد، حيث يمكنك طرح الأسئلة وانتظار الإجابة عليها من المستخدمين الآخرين.

اسئلة متعلقة

...